PD - 95219

IRL2203NSPbF

IRL2203NLPbF

 $V_{DSS} = 30V$

 $R_{DS(on)} = 7.0 m\Omega$

I_D = 116A⑦

HEXFET[®] Power MOSFET

D

S

International

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- 100% R_G Tested
- Lead-Free

Description

Advanced HEXFET[®] Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low onresistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application. The through-hole version (IRL2203NL) is available for low-profile applications.

Absolute Maximum Ratings

Symbol	Parameter	Max	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	116 ⑦	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	82	А
I _{DM}	Pulsed Drain Current ①	400	
P _D @T _A = 25°C	Power Dissipation	3.8	W
$P_{D} @ T_{C} = 25^{\circ}C$	Power Dissipation	180	W
	Linear Derating Factor	1.2	W/°C
V _{GS}	Gate-to-Source Voltage	± 16	V
I _{AR}	Avalanche Current ①	60	А
E _{AR}	Repetitive Avalanche Energy ①	18	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
т	Operating Junction and	-55 to + 175	
Т _Ј	Storage Temperature Range	-55 10 + 175	°C
T _{STG}	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

G

Thermal Resistance

Symbol	Parameter	Тур	Max	Units	
I COL	Junction-to-Case (9)		0.85	0CAA/	
$R_{ ext{ heta}JA}$	Junction-to-Ambient (PCB mount, steady state) ®		40	°C/W	

IRL2203NS/LPbF Electrical Characteristics @ T₁ = 25°C (unless otherwise specified)

International

Electrical Characteristics $@ I_J = 25^{\circ}C$ (unless otherwise specified)					TAR RECINC	
Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_{D} = 250 \mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.029		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			7.0		V _{GS} = 10V, I _D = 60A ④
				10		V _{GS} = 4.5V, I _D = 48A ④
V _{GS(th)}	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
9 _{fs}	Forward Transconductance	73			S	V _{DS} = 25V, I _D = 60A ④
I _{DSS}	Drain-to-Source Leakage Current			25		$V_{DS} = 30V, V_{GS} = 0V$
				250	μA	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	m۸	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -16V
Q _g	Total Gate Charge			60		I _D = 60A
Q _{gs}	Gate-to-Source Charge			14	nC	$V_{DS} = 24V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			33		V_{GS} = 4.5V, See Fig. 6 and 13
R _G	Gate Resistance	0.2		3.0	Ω	
t _{d(on)}	Turn-On Delay Time		11			V _{DD} = 15V
t _r	Rise Time		160			I _D = 60A
t _{d(off)}	Turn-Off Delay Time		23			$R_{G} = 1.8\Omega$
t _f	Fall Time		66			V _{GS} = 4.5V, See Fig. 10 ④
1	late and Daria la dusta a s		4.5			Between lead,
L _D	Internal Drain Inductance		4.5			6mm (0.25in.)
1			7.5		Nh	from package
L _S	Internal Source Inductance		7.5			and center of die contact
C _{iss}	Input Capacitance		3290			V _{GS} = 0V
C _{oss}	Output Capacitance		1270		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		170			f = 1.0MHz, See Fig. 5
E _{AS}	Single Pulse Avalanche Energy 2	1	1320 S	290 ©	mJ	I _{AS} = 60A, L = 0.16mH

Source-Drain Ratings and Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Conditions	
I _S	Continuous Source Current			116 ⑦		MOSFET symbol	
	(Body Diode)			110 0		showing the	
I _{SM}	Pulsed Source Current			400		integral reverse	
	(Body Diode) ①			400		p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C, I_S = 60A, V_{GS} = 0V$ (4)	
t _{rr}	Reverse Recovery Time		56	84	ns	T _J = 25°C, I _F = 60A	
Q _{rr}	Reverse Recovery Charge		110	170	nC	di/dt = 100A/µs ④	
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)					

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- 0 Starting T_J = 25°C, L = 0.16mH R_G = 25 $\Omega,$ I_{AS} = 60A, V_{GS} =10V (See Figure 12)
- $\textcircled{3}\ I_{SD} \leq$ 60A, di/dt \leq 110A/µs, $V_{DD} \leq V_{(BR)DSS},$ $T_J \leq$ 175°C

④ Pulse width \leq 400µs; duty cycle \leq 2%.

- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- 6 This is a calculated value limited to T_J = 175°C .
- ⑦ Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- (9) R_{θ} is measured at T_J approximately 90°C

IRL2203NS/LPbF

D²Pak Package Outline

Dimensions are shown in millimeters (inches)

S Y M B O L	DIMENSIONS			N	
В	MILLIM	ETERS	INCHES		0 T E S
0 L	MIN.	MAX.	MIN.	MAX.	E S
А	4.06	4.83	.160	.190	
A1		0.127		.005	
ь	0.51	0.99	.020	.039	
b1	0.51	0.89	.020	.035	4
b2	1.14	1.40	.045	.055	
с	0.43	0.63	.017	.025	
c1	0.38	0.74	.015	.029	4
c2	1.14	1.40	.045	.055	
D	8,51	9.65	.335	.380	3
D1	5.33		.210		
Е	9,65	10,67	.380	.420	3
E1	6.22		.245		
е	2.54	BSC	.100	BSC	
L	14,61	15.88	.575	.625	
L1	1.78	2.79	.070	.110	
L2		1.65		.065	
L3	1.27	1.78	.050	.070	
L4	0.25	BSC	.010 BSC		
m	17.78		.700		
m1	8.89		.350		
n	11,43		.450		
0	2.08		.082		
р	3.81		.150		
Θ	90,	93*	90*	93*	

LEAD ASSIGNMENTS

HEXFET	IGBTs, CoPACK	DIODES
1.— GATE	1.— GATE	1 ANODE *
2.— DRAIN	2.— COLLECTOR	2 CATHODE
3.— SOURCE	3.— EMITTER	3 ANODE

* PART DEPENDENT.

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]

3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.0057] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

5. CONTROLLING DIMENSION; INCH.

D²Pak Part Marking Information (Lead-Free)

-2× b2 C

-2хь Ф.010@A@В

2x 🕞

2X c // ±0.004@8

EXAMPLE:	THIS IS AN IRF530S WITH LOT CODE 8024 ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L"	INTERNATIONAL RECTIFIER LOGO	PART NUMBER
	Note: "P" in assembly line position indicates "Lead-Free"	ASSEMBLY LOT CODE	YEAR 0 = 2000 WEEK 02 LINE L
	OR		
	INTERNATIONAL RECTIFIER LOGO	PART NUMBER	
	ASSEMBLY	DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR 0 = 2000 WEEK 02 A = ASSEMBLY SITE CODE	

8

International

IRL2203NS/LPbF

International **IOR** Rectifier

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market.

International